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ABSTRACT

Earth observing systems are undergoing an architectural
transformation to perform novel scientific campaigns by dy-
namically composing assets from government and commer-
cial partners. Correspondingly, campaign-level engineering
methods and tools must accommodate greater degrees of de-
centralized control and independence. This paper reviews
advances provided by semantic web technology and dis-
tributed simulation to highlight some of the challenges in
modeling Earth observing systems of systems. A campaign
simulation framework organizes the contextual, structural,
and behavioral features necessary to model Earth observ-
ing systems from a system of systems perspective. Finally, a
multi-actor value framework considers interactive negotiation
of non-commensurate preferences by participating entities.

Index Terms— Earth observation, system of systems,
model interoperability, campaign simulation

1. INTRODUCTION

As a part of a broader shift in space systems engineering, the
Earth science domain is undergoing an architectural transfor-
mation enabled by advances in technology, component minia-
turization, and reductions in launch costs. Future observa-
tion strategies will supplement traditional government space-
craft with a broader mix of distributed platforms including
non-government assets under policy frameworks such as the
NOAA Commercial Space Policy [1] and Weather Research
and Forecasting Innovation Act of 2017 [2]. Pilot programs
with NASA and NOAA are already underway to purchase
data from commercial small-satellite constellations [3, 4].
Coordinating decentralized control of government and
commercial assets highlights the operational and managerial
independence common in systems of systems [5]. Rather
than being designed from scratch by a single entity, systems
of systems compose existing assets to produce desired emer-
gent behavior and rely on aligning incentives to ensure partic-
ipation. This indirect level of control presents challenges to
systems engineering activities and emphasizes greater levels
of interoperability in supporting models and simulation [6].
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This paper addresses some of the fundamental modeling
challenges facing conceptual design of Earth observing sys-
tems of systems. It reviews related work in model interoper-
ability and outlines a potential simulation framework to com-
pose models. Resulting campaign-level models seek to eval-
uate proposed concepts from a multi-actor perspective to un-
derstand and anticipate strategic behaviors on behalf of inter-
acting stakeholders.

2. MODEL INTEROPERABILITY

As a reflection of the intended system architecture, system
of systems models often require greater degrees of decentral-
ized control or independence among modules or components.
Coordinating models requires a degree of conceptual interop-
erability which can be oriented on a six-item scale [7]:

1. Technical: common information exchange mechanism.
2. Syntactic: common data syntax or structure.

3. Semantic: common data semantics or vocabulary.

4. Pragmatic: common context of data workflow or usage.
5. Dynamic: two-way interactive information exchange.
6. Conceptual: mutually compatible conceptual model.

From a basic level, establishing technical interoperability can
be as simple as exchanging files; however, achieving higher
levels of interoperability by aligning data syntax and seman-
tics presents major theoretical and practical challenges due to
differences in level of abstraction, core assumptions, and even
norms adopted by differing organizations. The ideal state of
conceptual interoperability would allow seamless model com-
position for system of systems engineering. The remainder of
this section reviews two approaches to establish model inter-
operability from static and dynamic perspectives.

2.1. Semantic Web Technology

Semantic web technology embodies a set of related standards
primarily published by the World Wide Web Consortium
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(W3C) to promote machine readability for web applications.
While typically oriented for static exchanges (i.e. semantics),
it provides an essential basis for interoperability.

The semantic web builds on the Resource Description
Framework (RDF) as a foundational concept to express in-
formation as a graph of “triples” connecting subjects and
objects (nodes) with named properties or predicates (edges)
[8]. Standards for eXtensible Markup Language (XML) and
JavaScript Object Notation for Linked Data (JSON-LD) pro-
vide common syntax for RDF data. Extensions to RDF such
as RDF Schema (RDFS) support taxonomic abstractions such
as class hierarchies and property domains/ranges [9].

Building on RDFS, the Web Ontology Language (OWL)
provides greater expressiveness to differentiate between uni-
versals (classes) and individuals (instances) and define logical
restrictions on class membership and data or object properties
[10]. Sophisticated ontologic rule sets can enable automated
reasoning or inferencing based on an open-world assumption
where missing information is inferred by logical deduction.
Upper-level ontologies such as the Basic Formal Ontology
(BFO) provide a consistent worldview to help merge separate
ontologies [11]. Some science domains such as marine re-
search publish and maintain ontology repositories [12]. While
there have been several efforts to create vocabularies specific
to the Earth science and space systems [13, 14, 15], there is
no widely-adopted standard used in practice.

Despite the technical capabilities of OWL, it has seen lim-
ited use in practical web applications due to a high degree of
complexity and difficulty in standardizing expressive vocabu-
laries. Competing approaches such as Schema.org are based
on simpler frameworks while still drawing from linked data
representations of RDF and RDFS [16]. Combined with user-
friendly syntax such as JSON-LD, Schema.org has realized
higher levels of adoption by web applications but has not yet
been applied to engineering model interoperability.

2.2. Distributed Simulation

Distributed simulation covers a set of standards largely de-
veloped within of the defense domain to integrate simulations
controlled by different partners (e.g. aligned military branches
or nations) or contractors using proprietary information [17].
In these applications, the large scope and organizational bar-
riers prevent direct integration of simulation models and data
is exchanged using local or wide area computer networks.

Real-time protocols used for wargaming exercises include
Distributed Interactive Simulation (DIS) which provides an
interface and a common syntax for line-level information ex-
change during a distributed simulation [18]. DIS uses a Proto-
col Data Unit (PDU) to define platform-specific vocabularies
for simulation state information. Given its real-time nature,
DIS is most frequently used in training or verification, valida-
tion, and testing activities.

The High Level Architecture (HLA) is a related standard

supporting general-purpose simulation including non-real-
time [19]. It defines a common software application program
interface (API) to a runtime infrastructure (RTI) which ex-
changes data during a federated simulation. RTI synchroniza-
tion algorithms enforce temporal causality and avoid live- or
dead-lock conditions during time managed simulations. The
HLA allows custom vocabularies composing primitive types
documented in a federation object model (FOM) and follows
expected dynamics described in a federation agreement. To
promote compatibility with legacy DIS applications, PDUs
have been published as a standard Realtime Platform Refer-
ence (RPR) FOM [20].

The HLA and a domain-specific Space Reference FOM
have recently applied to the space systems domain in the con-
text of human exploration to coordinate mission simulation
between agencies [21]. Some of the key elements of the Space
Reference FOM include modeling spacecraft state variables,
reference frames for coordinate system transformations, and
various time scales.

3. CAMPAIGN SIMULATION FRAMEWORK

Earth observing systems of systems should viewed as an in-
tegrated campaign of individual assets and missions operated
by participating entities. A campaign-level simulation must
be able to compose a set of interdependent mission models
which interact with each other through a well-defined inter-
operability interface. Irrespective of the underlying interop-
erability approach, campaign-level simulation relies a consis-
tent framework to integrate member models.

This section describes how the Infrastructure System of
Systems (ISoS) framework, originally developed to model
strategic interdependencies between infrastructure systems,
could be adapted to increase conceptual interoperability be-
tween constituent models [22]. Informed by past applications
to federated satellite systems [23], this section organizes
model state and state transitions using a logical description of
the model context, structure, and behavior.

3.1. Contextual Model

The contextual model establishes consistent representations
of space, time, and data primitives such as resource types fun-
damental for exchanges across system boundaries.

Although the original ISoS framework prescribes a dis-
crete spatial model, Earth observing systems rely heavily on
a geometric interpretation of spatial trajectories and phenom-
ena. At least two reference frames are required to express
most concepts. First, surface, sea, or aerial platforms use
an Earth-fixed frame with transformations between Cartesian
and geodetic coordinates such as the World Geodetic System
(WGS) 84 model. Second, space platforms use an Earth iner-
tial frame (independent of Earth’s rotation) with transforma-
tions between Cartesian and Keplerian orbital elements.



Depending on the implementing technique, a campaign-
level simulation may tolerate slightly different temporal res-
olutions; however, the composite model must adopt a consis-
tent time scale to represent global operations. Common time
scales used in the space systems domain include Coordinated
Universal Time (UTC) and Terrestrial Time (TT) but others
such as Julian Day or Modified Julian Day are also used. De-
tailed operational models may need to account for complexi-
ties such as leap periods when translating between time scales
and Gregorian calendar representations such as ISO-8601.

Finally, other data primitives may be needed to express
quanta exchanged across system boundaries. The primary re-
sources managed in Earth observing systems include infor-
mation and currency; however, future concepts of operation
may include a larger set of services such as propellants/fuels
and energy exchanged between assets.

3.2. Structural Model

The structural framework expresses model state as the set of
information to recreate a snapshot in time. It is expressed in
terms of schemas or ontologies for semantic web applications
and PDUs or FOMs for distributed simulation. From the per-
spective of an interoperability interface, only the model state
relevant for interactions across system boundaries must be ex-
posed with particular emphasis on communications systems.

An Earth observing system is composed of multiple
space- and non-space platforms called elements. The most
essential state variables for each element includes its spatial
location including position, velocity, and attitude quantities
within a contextual reference frame. Velocity is particularly
important for dead reckoning interpolation and Doppler shift
calculations. Other relevant information required at higher
levels of model fidelity include technical descriptions of
communication systems such as transmission frequencies,
antenna diameter, gain, power, and losses.

3.3. Behavioral Model

The behavioral framework expresses valid state transitions
executed in response to system functionality resulting in an
updated state value or message. In distributed simulation, be-
haviors are communicated with PDU exchanges or FOM ob-
ject or interaction updates.

While highly specific to each use case, there are gener-
ally five types of system functions: transforming from input
to output resources (e.g. using an instrument to record an
observation), transporting from an origin to a destination
(e.g. transmitting data on a communications link), storing or
retrieving resources (e.g. writing data to memory), exchang-
ing resources across system boundaries (e.g. selling data or
data services), and controlling an element by prescribing
functions to execute (e.g. instructions for any of the above).
Of these behaviors, only the exchanging resources function
must be exposed to the interoperability interface.

4. MULTI-ACTOR VALUE FRAMEWORK

Simply performing a technical simulation analysis is not suf-
ficient to address challenges in Earth observing system of sys-
tems. The presence of multiple actors introduces new sources
of complexity related to the interpretation and pursuit of indi-
vidual potentially-competing objectives. Models should also
be used as a social platform to communicate objectives and
preferences among interacting stakeholders. At the system of
systems level, participation is not guaranteed and composing
systems must be treated more like a negotiation.

Collaboration in engineering design poses several practi-
cal and theoretical challenges. For example, consider the en-
gineering collaboration via negotiation (ECN) model of engi-
neering decision-making [24]. Interactions among stakehold-
ers must be carefully managed to ensure adequate represen-
tation and appropriate communication channels. Interactive
modeling sessions help stakeholders to construct a common
understanding of the problem and, once attained, productively
discourse group preferences. Finally, collective agreement
can be achieved by negotiating on shared and competing ob-
jectives with respect to the group preference.

Multi-actor value modeling views Earth observing cam-
paigns more like a game than an optimization. There is no sin-
gle objective function and individual stakeholders may have
difficulty expressing their own preferences, let alone others’.
There is a significant amount of research to consider eco-
nomic incentives or mechanisms to encourage participation
in distributed systems at the forefront of systems engineering.

5. CONCLUSION

Advancing new Earth observation strategies by composing
distributed assets operated by multiple partners faces signif-
icant modeling challenges. Constituent models must con-
form to an interoperability interface to control information ex-
changes across organizational boundaries. A campaign-level
simulation framework can help to normalize model state and
state transitions at an abstract level. Finally, corresponding
analysis must be treated as a multi-actor value problem rather
than an optimization to reflect the lesser degree of control over
design concept selection and operation.

This paper highlights some of the existing work from
other domains including information technology (e.g. se-
mantic web technology) and defense or combat simulation
(e.g. distributed simulation standards) the Earth science com-
munity can leverage for modeling systems of systems.
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